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π-electron energies and bond orders of benzenoid hydrocarbons with up to five fused
hexagons have been considered by the simple Bond Orbital Resonance Theory (BORT) ap-
proach. The corresponding ground states were determined according to four BORT models.
In the first three models a diagonalisation of the Hückel-type Hamiltonian was performed in
the bases of Kekulé, of Kekulé and mono-Claus and of Kekulé and Claus resonance struc-
tures, respectively. In the fourth model a simple BORT ansatz was used. According to this
ansatz, the ground state is a linear combination of the positive Kekulé structures, all with
equal coefficients. It was shown that π-electron energies and bond orders obtained by these
models correlate much better with the PPP energies and bond orders than with the Hückel
energies and bond orders. This indicates that a simple BORT approach is quite reliable in
predicting the more sophisticated PPP results. Concerning the relative performance of the
four BORT models, the best results were obtained with the BORT ansatz. The performance
deteriorates with the expansion of the basis set. This is attributed to the fact that in these
models the improvement of the basis set is not accompanied with the corresponding im-
provement of the Hamiltonian. Comparing the BORT-ansatz bond orders with the Pauling
bond orders, it was shown that BORT-ansatz bond orders correlate much better with the PPP
bond orders.

1. Introduction

Bond Orbital Resonance Theory (BORT) is a semi-empirical resonance model
of an electronic structure of molecules. It considers an electronic state as a linear
combination of the so-called Regular Resonance Structures (RRSs) [16]. Each RRS
corresponds to a Slater determinant made up of mutually disjunct bond orbitals. Bond
orbitals are assumed to be built of orthonormal atomic orbitals and are shown graphi-
cally as formal bonds [16]. For instance, within the σ–π approximation a π-electron
system of a conjugated molecule may be described in terms of RRSs whose bond
orbitals are composed of orthonormal 2pz atomic orbitals of conjugated atoms.

Recently, the extensive sequential optimization of RRSs describing π-electron
ground states of Benzenoid Hydrocarbons (BHs) with up to five fused hexagonal rings
(figure 1) was performed. As expected, it was shown that the most efficient RRSs in
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the description of π-electron ground states of these molecules are Kekulé structures [7].
The importance of Kekulé structures is consistent with the widespread use of the energy
criterion in selecting the most important basis functions. However, it was found that
besides Kekulé structures, the next important RRSs are energetically very unfavourable
Claus structures [7,13]. A Claus RRS possesses one or more rings with the three “long”
diagonal para-bond orbitals, while the remaining part of the structure is of the Kekulé
type. With respect to the number of Claus rings, we distinguish mono-Claus RRSs,
bi-Claus RRSs and so on. The relative importance of Claus RRSs can be ascribed
to the pronounced local benzene-like properties of BHs and the fact that the benzene
ground state is exactly (within the independent-particle model) represented by the linear
combination of its two Kekulé and one Claus RRSs [13]. Other types of relatively
very numerous RRSs generally have quite negligible and obscure importance and can
be discarded in the first approximation [7].

The purpose of this work is to investigate the effect of extending the basis of
Kekulé RRSs by other RRSs. We extended the Kekulé basis by Claus RRSs since
these structures were found to be the most important among all excited RRSs. In
this article we consider four different BORT models and use them to determine some
π-electron ground-state properties of BHs, such as energy and bond orders. The four
models differ in the choice of a basis set, which includes either Kekulé RRSs alone,
or some combination of Kekulé and Claus RRSs, and in the way how the π-electron
ground state is approximated.

All four models utilise the spin-separation approximation [11,16]. Within this
approximation the 2n-electron closed-shell ground state of a BH is given as |Ψ〉 =
|Φ Φ〉, where the normalized n-electron α-spin Φ and β-spin Φ substates are identical
up to the spin. Hence, the expectation value of a one-particle spin-independent operator
O in the state |Ψ〉 = |Φ Φ〉 is given by

〈O〉 = 2〈Φ|O|Φ〉/〈Φ | Φ〉. (1)

Within BORT the substate Φ is represented as a linear combination of n-particle RRSs
{Sa}:

Φ =
∑
a

aaSa, (2)

and, hence,

〈O〉 = 2
∑
a,b

aaab〈Sa|O|Sb〉
/∑

a,b

aaab〈Sa | Sb〉. (3)

Models considered differ in the way how the coefficients {aa} of the linear expan-
sion (2) were determined. In models (I), (II) and (III) these coefficients were deter-
mined by a diagonalization of the Hückel Hamiltonian in the bases of only Kekulé
RRSs (K), of Kekulé and mono-Claus RRSs (K+mC), and of Kekulé and all Claus
RRSs (K+C), respectively. In model (IV), a simple BORT-ansatz approximation was
used. According to this approximation, to the ground state of an alternant hydrocarbon
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contribute only Kekulé RRSs which are all of the same parity, and the contribution of
each such Kekulé structure is the same [15,16]. The requirement that Kekulé structure
of only one parity should be included in the ground state follows from the fact that
in the case of alternant hydrocarbons all matrix elements of the Hamiltonian oper-
ator between RRSs of the opposite parity vanish [12,16]. However, in the case of
benzenoid systems such as considered here, all Kekulé structures are of the same par-
ity, and, hence, in this special case, the BORT ansatz reduces to the well-known VB
ansatz [12,15,16]. Thus, in model (IV), the expression (3) simplifies to

〈O〉 = 2
∑
a,b

〈Sa|O|Sb〉
/∑

a,b

〈Sa | Sb〉, (4)

where summation is performed only over Kekulé RRSs.
All matrix elements 〈Sa|O|Sb〉 in relations (3) and (4) can be calculated by the

simple graphical algorithms [12]. While models (I)–(III) require a diagonalization of
the Hamiltonian matrix in order to determine coefficients {aa}, in model (IV) no di-
agonalization is required. The determination of energy and bond orders in model (IV)
is thus reduced to the straightforward summation over contributions of different super-
position diagrams.

In order to estimate relative performance of models (I)–(IV), the calculated en-
ergies and bond orders were compared with the corresponding values calculated by
the Hückel and Pariser–Parr–Pople (PPP) MO methods. The BORT bond orders were
also compared with the Pauling bond orders. We used a variant of the PPP method
with Dewar parameters [2]. For the sake of simplicity, a hexagonal geometry of six-
membered rings with the fixed carbon–carbon distance (1.397 Å) was assumed and
all Coulomb interactions between atoms which are more than three bonds apart were
ignored.

2. Results and discussion

2.1. Energy

The total π-electron energies were calculated with the models (I)–(IV), that is
by using the wave functions whose coefficients {aa} (equation (2)) are determined
by the diagonalization of the Hückel-type Hamiltonian in the bases of only Kekulé
RRSs (Eπ(K)), of Kekulé and mono-Claus RRSs (Eπ(K+mC)), and of Kekulé and all
Claus RRSs (Eπ(K+C)), and the BORT-ansatz wave functions (Eπ(A)). The values
Eπ(K), Eπ(K+mC), Eπ(K+C) and Eπ(A) are listed in table 1 for all BHs in figure 1.
In the last two columns of this table energies calculated by the Hückel (Eπ(H)) and
PPP (Eπ(P)) MO methods are also given. These energies provide a reference for a
comparison and estimation of the relative performance of the four BORT models. The
BORT and Hückel energies are expressed in units of the Hückel resonance integral β,
while the PPP energies are given in eV. The coefficients of correlation rP and rH of
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Table 1
π-electron energies for BHs I–XXV in figure 1.

BH Eπ(K) Eπ(K+mC) Eπ(K+C) Eπ(A) Eπ(H) Eπ(P)

I 7.2000 8.0000 8.0000 7.2000 8.0000 12.8273
II 11.8271 12.9425 12.9425 11.8182 13.6832 21.9003
III 16.200 17.4710 17.4710 16.1730 19.3137 30.7401
IV 16.6997 18.2766 18.38599 16.6848 19.4483 31.2730
V 20.4399 21.7979 21.7979 20.3924 24.9308 39.4583
VI 21.1970 22.9899 23.1449 21.1681 25.1012 40.2187
VII 21.4586 23.3824 23.5693 21.4359 25.1875 40.5333
VIII 21.4586 23.3824 23.5693 21.4359 25.1922 40.5358
IX 21.7423 23.8307 24.1580 21.7284 25.2745 40.8012
X 18.9302 20.5816 20.6786 18.9016 22.5055 36.1593
XI 24.6034 26.0141 26.0141 24.5376 30.5440 48.1182
XII 25.5060 27.4144 27.5913 25.4581 30.7256 48.9919
XIII 26.1313 28.3591 28.6870 26.0987 30.8795 49.6479
XIV 26.1313 28.3591 28.6870 26.0987 30.8805 49.6484
XV 26.3076 28.6241 29.0255 26.2839 30.9418 49.8107
XVI 25.9027 27.9985 28.2213 25.8649 30.8390 49.4379
XVII 25.7486 27.7783 27.9887 25.7080 30.7627 49.2144
XVIII 25.9027 27.9985 28.2213 25.8649 30.8338 49.4353
XIX 26.2682 28.5536 28.8817 26.2384 30.9386 49.8376
XX 26.2682 28.5536 28.8817 26.2384 30.9362 49.8366
XXI 26.4313 28.7983 29.1963 26.4067 30.9990 50.0011
XXII 26.2682 28.5536 28.8817 26.2384 30.9432 49.8397
XXIII 23.6542 25.6624 25.8849 23.6364 28.2453 45.3317
XXIV 23.5698 25.5158 25.6911 23.5283 28.2220 45.3055
XXV 24.0087 26.1395 26.4256 23.9816 28.3361 45.7153

Table 2
Coefficients of correlations of energies calculated with the four BORT
models with energies calculated by the PPP and Hückel MO methods

for BHs I–XXV.

Coef. corr. Eπ(K) Eπ(K+mC) Eπ(K+C) Eπ(A)

Eπ(P) 0.9992 0.9972 0.9960 0.9991
Eπ(H) 0.9978 0.9949 0.9934 0.9977

the BORT energies with the corresponding PPP and Hückel energies, respectively, are
listed in table 2.

In all considered cases the correlation is very good. This shows that the Hückel
and PPP energies are both very well represented by all four BORT models. In addition,
in all cases one obtains significantly better correlation of the BORT energies with the
PPP energies than with the Hückel energies. This finding agrees with the outcome
of the ground-state optimization: for each considered BH, the PPP reference state is
represented better than the Hückel reference state, provided one approximates these
states as linear combinations of either only Kekulé RRSs or Kekulé and Claus RRSs [7].



V. Šimek, T. Živković / Ground-state properties of benzenoid hydrocarbons 159

Figure 1. Benzenoid hydrocarbons having up to five fused rings and at least one Kekulé RRS.
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This result is encouraging since a better approximation of the more sophisticated PPP
model is preferable.

The best correlations are obtained with the basis sets containing only Kekulé
RRSs (models (I) and (IV)). The correlation continuously deteriorates with the suc-
cessive inclusion of mono-Claus RRSs (model (II)) and all other Claus RRSs (model
(III)). Therefore, as far as the ground state energy is considered, there is no improve-
ment if, besides Kekulé structures, one also includes Claus structures (and, possibly,
some other excited RRSs). With the simple BORT models (I)–(IV), the best results are
obtained with Kekulé RRSs alone. In addition, as shown in table 2, the simple and very
crude BORT ansatz produces surprisingly good results. The correlation coefficients for
the BORT ansatz are only insignificantly smaller than the best correlation coefficients.
In the case of the correlation with the PPP energies, the BORT-ansatz correlation coef-
ficient is rP = 0.9991, while the best correlation coefficient is rP = 0.9992. Similarly,
in the case of the correlation with the Hückel energies, the BORT-ansatz correlation
coefficient is rH = 0.9977, and the best correlation coefficient rH = 0.9978 is only
marginally better.

The above result shows that the simplest BORT model (IV) based on the BORT
ansatz, which, unlike the other three models (I)–(III), requires no diagonalization,
produces very good ground state energies of BHs. In our opinion, this surprisingly
good performance of such a crude model is due to its inner consistency. In any semi-
empirical model one has to deal with the two types of approximations. On one hand,
one has to approximate a Hamiltonian, and on the other hand, one has to approximate,
or rather truncate, a space of states. In a well-behaved model these approximations
should balance each other, i.e., a sophisticated approximation of a Hamiltonian should
be combined with equally sophisticated approximation of a space of states, and vice
versa. Thus, a very simple Hamiltonian should be combined with an equally simple
space of states, and, if one combines such a Hamiltonian with more sophisticated space
of states, one usually obtains not better, but worse results. This is exactly what happens
here: model (I) combines a simple Hückel Hamiltonian with a simple space of states
which is spanned only by Kekulé RRSs, and it gives the best results. In this model
the Hamiltonian and the space of states are well balanced. If one improves the space
of states by including either only mono-Claus RRSs (model (II)) or all Claus RRSs
(model (III)), one obtains, as far as the ground-state energies are considered, worse
results. The Hamiltonian and the space of states are not well balanced in models (II)
and (III). Finally, if one considers the BORT ansatz (model (IV)), the space of states
is even more restricted than in model (I) since it is uniquely defined by the ansatz, and
no calculation of the ground-state wave function is needed. This model is also very
well balanced.

There are some other points which should be considered. Within all four models
the energies obtained for the pairs of cis- and trans-isomers, such as pairs VII, VIII and
XIII, XIV, are the same. The same energies are also obtained for the pair XVI, XVIII
and the triplet XIX, XX and XXII. It can be shown that, as a consequence of a simple
transformation performed on a molecular graph, all these BHs should have exactly the
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Table 3
Energy correlation coefficients for the set of BHs I–XXV excluding

linear acenes III, V and XI.

Coef. corr. Eπ(K) Eπ(K+mC) Eπ(K+C) Eπ(A)

Eπ(P) 0.9997 0.9991 0.9986 0.9996
Eπ(H) 0.9993 0.9985 0.9992 0.9992

same energies within the simple BORT approach [14]. Although the energies of BHs
contained in the above pairs and triplet are not exactly the same neither in the Hückel
nor in the PPP model, they are nevertheless very close to each other, especially in the
PPP model. In general, the energies of these structural isomers calculated by more
sophisticated models are also very similar [2–4].

Another point considers linearly condensed anthracene (III), naphthacene (V)
and pentacene (XI). If one excludes these BHs and retains only branched isomers, the
remaining subset of BHs has notably larger correlation coefficients. These correlation
coefficients are given in table 3. Comparing tables 2 and 3, one finds that the exclusion
of linearly condensed BHs improves the correlations at least twice and in some cases
more than three times. The improvement is more pronounced in the case of larger
basis sets which, besides the Kekulé RRSs, also include either only mono-Claus RRSs
or all Claus RRSs. On the other hand, within the subset of only linear acenes, there
are also good correlations of the BORT energies with the PPP and Hückel energies:
for energies calculated in each BORT model, correlation coefficients rP and rH are
equal 0.9999. Such a partition of the set of BHs into the two subsets can be ascribed
to the different pace at which the number of Kekulé and/or Claus RRSs increases
with the number of π-electrons for these systems: while for angular BHs the number
of Kekulé and/or Claus RRSs increases approximately exponentially with the number
of π-electrons, for linear acenes this increase is only linear. As a result, the energy
changes occuring upon adding all Kekulé and/or Claus RRSs are noticeably different
for these subclasses of BHs. This difference is more pronounced for the basis set
including more resonance structures, and thus the improvement of rP and rH due to
the neglect of acenes is greater for the basis sets which include both Kekulé and Claus
RRSs.

2.2. Bond orders

π-electron bond order between atoms (i) and (j) is defined as the expectation
value of the corresponding bond-order operator (equation (3) or (4)) [15,16]. BHs are
alternant systems whose atoms can be partitioned into starred and unstarred subsets
in such a way that no two adjacent atoms are from the same subset. According to
the well-known pairing theorem originally derived within the MO approach, for each
BH the calculated electron density is uniformly distributed over all conjugated atoms
and the bond orders between atoms from the same subset vanish [1,9,11,12,16]. It is,
therefore, sufficient to consider bond orders between atoms from different subsets.
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Table 4
Bond-order correlation coefficients rP for BHs II–XXV.

BH Coefficients rP of correlation with the PPP bond orders

K K+mC K+C A Pauling H

II 0.9827 0.9478 0.9478 0.9974 0.9521 0.7964
III 0.9898 0.9730 0.9730 0.9983 0.9807 0.8539
IV 0.9895 0.9777 0.9721 0.9953 0.9895 0.9572
V 0.9866 0.9679 0.9679 0.9982 0.9820 0.8269
VI 0.9877 0.9749 0.9700 0.9949 0.9885 0.6798
VII 0.9839 0.9708 0.9692 0.9945 0.9883 0.9174
VIII 0.9833 0.9704 0.9688 0.9938 0.9871 0.9114
IX 0.9813 0.9755 0.9713 0.9875 0.9982 0.9534
X 0.9897 0.9762 0.9729 0.9903 0.9763 0.9475
XI 0.9887 0.9773 0.9773 0.9982 0.9894 0.8349
XII 0.9887 0.9784 0.9752 0.9960 0.9893 0.9197
XIII 0.9858 0.9737 0.9684 0.9943 0.9908 0.9445
XIV 0.9856 0.9736 0.9683 0.9941 0.9906 0.9431
XV 0.9832 0.9732 0.9688 0.9894 0.9884 0.9358
XVI 0.9883 0.9775 0.9756 0.9955 0.9840 0.9217
XVII 0.9915 0.9809 0.9778 0.9962 0.9892 0.9464
XVIII 0.9887 0.9778 0.9759 0.9960 0.9878 0.9261
XIX 0.9851 0.9723 0.9655 0.9945 0.9895 0.9326
XX 0.9858 0.9732 0.9659 0.9949 0.9907 0.9411
XXI 0.9799 0.9700 0.9640 0.9878 0.9909 0.9389
XXII 0.9854 0.9730 0.9656 0.9942 0.9892 0.9344
XXIII 0.9875 0.9788 0.9776 0.9903 0.9788 0.9182
XXIV 0.9827 0.9680 0.9642 0.9906 0.9806 0.9141
XXV 0.9825 0.9671 0.9606 0.9891 0.9859 0.9480

All 0.9856 0.9733 0.9692 0.9928 0.9850 0.9081

In table 4, the values of the coefficients rP of correlation between the PPP bond
orders and the bond orders calculated with the four BORT models are shown. The
correlation coefficients rP for the Pauling and Hückel bond orders are also given. The
PPP method is used as a reference since it gives reliable predictions for bond orders
as well as for other ground-state properties of the alternant systems [2].

Coefficients rP in table 4 are obtained by taking into account only bond orders
between directly bonded atoms. These bond orders are always positive. Assuming that
these quantities can serve as a measure of bond strength, they are often related to
the experimental bond lengths [1,5,10]. On the other hand, there is no direct physi-
cal interpretation for the bond orders between nonbonded atoms. These bond orders
may be either positive or negative and they are, in absolute values, much smaller
than bond orders between directly bonded atoms [15]. Their signs can be easily de-
termined from relations (3) or (4) by using the simple algorithms for calculating over-
lap integrals and matrix elements of the corresponding bond-order operators between
RRSs [12,15].
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Table 5
Various π-bond orders, bond lengths and correlation coefficients for anthracene (III).

Bond π-bond orders Exp. bond

K K+C A Pauling H P length (Å)

a 0.242 0.263 0.287 0.25 0.586 0.463 1.418
b 0.867 0.904 0.827 0.75 0.737 0.828 1.353
c 0.242 0.263 0.287 0.25 0.535 0.443 1.428
d 0.442 0.526 0.395 0.25 0.485 0.524 1.432
e 0.575 0.622 0.568 0.50 0.606 0.634 1.395

rP 0.9898 0.9730 0.9983 0.9807 0.8539 – 0.9537
rH 0.7712 0.7715 0.8380 0.9162 – 0.8539 0.9697
|rexp| 0.9017 0.8588 0.9456 0.9849 0.9697 0.9537 –

Table 6
Various π-bond orders, bond lengths and correlation coefficients for phenanthrene

(IV).

Bond π-bond orders Exp. bond

K K+mC K+C A Pauling H P length (Å)

a 0.483 0.541 0.557 0.486 0.4 0.623 0.581 1.382
b 0.697 0.75 0.747 0.689 0.6 0.702 0.738 1.376
c 0.483 0.541 0.557 0.486 0.4 0.590 0.569 1.392
d 0.605 0.689 0.691 0.564 0.4 0.542 0.615 1.414
e 0.182 0.193 0.180 0.222 0.2 0.461 0.395 1.455
f 0.908 0.939 0.944 0.876 0.8 0.775 0.852 1.339
g 0.182 0.193 0.180 0.222 0.2 0.506 0.412 1.423
h 0.483 0.541 0.557 0.486 0.4 0.575 0.564 1.414
i 0.697 0.75 0.747 0.689 0.6 0.707 0.740 1.350

rP 0.9895 0.9777 0.9721 0.9953 0.9895 0.9572 – 0.9162
rH 0.9147 0.8912 0.8874 0.9350 0.9687 – 0.9572 0.9696
|rexp| 0.8762 0.8583 0.8568 0.8931 0.9166 0.9696 0.9162 –

Tables 5 and 6 show in more details bond orders between directly bonded atoms
of anthracene (III) and phenanthrene (IV), respectively. Results obtained for these
relatively simple π-electron systems illustrate general behaviour of results observed
for all other linear and angular isomers considered. The last columns of tables 5
and 6 contain experimental bond lengths, while their last three rows show values of
the correlation coefficients with the PPP (rP) and Hückel (rH) bond orders as well as
with the experimental bond lengths (|rexp|) [5]. Since the correlation between the bond
orders and bond lengths is negative, the absolute value of the corresponding correlation
coefficient |rexp| is given.

The bond order results generally follow the same pattern as the energy results.
The BORT bond orders are better correlated with the PPP bond orders than with
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Figure 2. Comparison of correlations of the bond orders calculated by the BORT-ansatz (�) and Pauling
(◦) bond orders with the PPP bond orders. Correlation coefficients rP for the BORT-ansatz and Pauling

bond orders are 0.9928 and 0.9850, respectively.

the Hückel bond orders, as the examples of anthracene (III) and phenanthrene (IV)
demonstrate.

Concerning the relative performance of the four BORT models, results in table 4
show high regularity: for each benzenoid molecule, the best correlation is obtained
with the BORT ansatz (model (IV)). The next is the correlation obtained with the
Kekulé basis (model (I)), then the correlation obtained with the basis of Kekulé and
mono-Claus RRSs (model (II)), and, finally, the correlation obtained with the basis
of Kekulé and all Claus RRS (model (III)). As example, for the entire set of BHs
I–XXV the coefficient rP of correlation between the PPP bond orders and the bond
orders calculated by model (IV) is 0.9928, while in the case of model (III), rP is equal
to 0.9692. In conclusion, by far the best results are obtained with the simple BORT
ansatz (model (IV)).

The comparison of the BORT and Pauling bond orders is also interesting. Corre-
lation coefficients rP for the BORT-ansatz and Pauling bond orders in all BHs I–XXV
are 0.9928 and 0.9850, respectively. Associated linear curves obtained by the least
square fit are shown in figure 2. The dispersion of points (2) corresponding to the
BORT-ansatz bond orders is much less than that of points (◦) corresponding to the
Pauling bond orders. It can be noticed that the BORT bond orders, like the Paul-
ing bond orders, show cumulating tendency – “ties” (two or more bonds of different
lengths possess the same bond order). However, this property is less pronounced for
the BORT bond orders, resulting in the improved correlation.

In general, the bond orders calculated by the BORT ansatz (model (IV)) correlate
much better with the PPP bond orders than the Pauling bond orders. In table 4 one
can find only two exceptions, triphenylene IX and benzo[g]chrysene XXI. The other
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BORT models are less successful: model (I) is on an average equally successful as
Pauling’s model, while models (II) and (III) are much worse.

In the bond order calculation one can also notice different behaviour of subsets of
linear and angular BHs. For example, with the ansatz bond orders, the best correlation
coefficients rP are obtained for linear anthracene (III) (0.9983), napthacene (V) (0.9982)
and pentacene (XI) (0.9982), while the worst correlation coefficients rP are achieved
for the fully benzenoid triphenylene (IX) (0.9875) and the most branched five-ring
isomer XXI (0.9878) (table 4). The Hückel bond orders show the opposite trend:
worse/better correlations are observed for more linear/angular isomers. The Pauling
bond orders show behaviour similar to the Hückel bond orders. For example, BHs IX
and XXI are the only exceptions for which Pauling’s formula gives better predictions
of bond orders than the BORT-ansatz relation (4).

The Hückel and Pauling bond orders also show similar behaviour in the corre-
lation with the experimentally observed bond lengths [5]. On the whole, the Hückel
and Pauling bond orders correlate better with the experimental bond lengths than the
PPP and BORT bond orders. As the results for anthracene (III) (table 5) and phenan-
threne (IV) (table 6) demonstrate, the values of coefficients |rexp| decrease from the
Hückel and Pauling bond orders to the PPP bond orders and further to the BORT bond
orders. For a set of BHs I–V and VIII–X, |rexp| are 0.9605, 0.9316 and 0.9233 for
the Hückel, Pauling and PPP bond orders, respectively. With each particular BORT
approximate wave function we obtained smaller values of coefficient |rexp|. They are
in the range from 0.9018 for the BORT-ansatz wave function to 0.8406 for the wave
function defined in the basis of all Kekulé and Claus RRSs.

The comparison with experimental bond lengths seems contrary to our choice of
the PPP method as a reliable reference approach for estimating the quality of bond
order predictions. However, bond length is a complex quantity whose value depends on
numerous factors, and π-electron distribution is only one of them. As a consequence,
there is no strong correlation between the π-electron bond orders and the bond lengths.
The good correlation with bond orders does not necessarily imply the good correlation
with bond lengths. In this paper we put emphasis on the good correlation with bond
orders.

In order to estimate the relative performance of the four BORT models, we
have also done another statistical analysis. Since BORT models (I)–(IV) are rela-
tively simple, one cannot expect these models to produce numerically very reliable
bond orders. The same also holds for all other ground-state properties. As a con-
sequence, there is corresponding uncertainty in interpreting the significance of the
linear correlation coefficient r, which is calculated by using these numerical values.
In particular, a greater correlation coefficient does not necessarily imply a greater
significance [6].

In such cases when the exact numerical values are not very reliable, one can use
nonparametric or rank correlation as a measure of correlation. The rank correlation
does not deal with the exact numerical values of quantities considered, but rather
with their relative order. For instance, in the case of two bond orders p1 and p2, all
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what is important is whether p1 < p2, p1 > p2, or p1 = p2. There are two popular
nonparametric correlation coefficients: the Spearman rank-order correlation coefficient
and Kendall’s tau (τ ) [6].

In table 7 we show values of Kendall’s τ for the nonparametric correlations with
the PPP bond orders. The results from this table and from table 4 are very similar.
In particular, the best nonparametric correlation with the PPP bond orders is obtained
with the simple BORT-ansatz model. If one compares relative performance of the
BORT-ansatz model and Pauling’s model, one finds that in almost all cases the BORT
ansatz produces better nonparametric correlation with the PPP bond orders. In table 7,
there is only one exception, benzo[e]pyrene XXV. This is even better result than in
the case when as a measure of correlation one uses a linear correlation coefficient rP

where one finds two such exceptions (table 4). In general, the relative order of the PPP
bond order values is quite well reproduced by the BORT model based on the ansatz
wave function: if PPP predicts a bond a to have greater bond order than a bond b,
then the simplest BORT model predicts the bond a to have greater or equal bond order
as the bond b. Analogous statistical analysis, with similar results, can be performed
for calculated energies of BHs.

Table 7
Bond-order Kendall’s correlation coefficients τ P for BHs II–XXV.

BH Kendall’s tau τ P with the PPP bond orders

K K+mC K+C A Pauling H

II 0.9129 0.9129 0.9129 0.9129 0.7071 0.3334
III 0.9487 0.9487 0.9487 0.9487 0.8367 0.6000
IV 0.9280 0.9280 0.9280 0.9280 0.8819 0.8334
V 0.9759 0.8783 0.8783 0.9759 0.8452 0.5238
VI 0.9017 0.8801 0.8801 0.9587 0.9129 0.4762
VII 0.9342 0.8564 0.8564 0.9342 0.9045 0.7818
VIII 0.9342 0.8564 0.8564 0.9342 0.9045 0.7818
IX 0.9487 0.9487 0.9487 0.9487 0.8367 0.6000
X 0.9661 0.9661 0.9661 0.9661 0.9310 0.8667
XI 0.9092 0.9092 0.9092 0.9820 0.8864 0.5714
XII 0.9578 0.9452 0.9452 0.9672 0.9266 0.7415
XIII 0.8120 0.8120 0.8120 0.9473 0.9268 0.8718
XIV 0.8120 0.8120 0.8120 0.9473 0.9268 0.8974
XV 0.9514 0.8925 0.8925 0.9363 0.9105 0.6952
XVI 0.9183 0.8930 0.8930 0.9353 0.9034 0.7292
XVII 0.9379 0.9379 0.9379 0.9379 0.8721 0.7802
XVIII 0.9183 0.8930 0.8930 0.9276 0.9017 0.7231
XIX 0.9332 0.9332 0.9332 0.9332 0.9132 0.7969
XX 0.9550 0.9550 0.9550 0.9550 0.9376 0.8462
XXI 0.9106 0.9106 0.9106 0.9236 0.8780 0.7723
XXII 0.9550 0.9550 0.9550 0.9550 0.9376 0.8022
XXIII 0.8997 0.8997 0.8997 0.8997 0.8165 0.7143
XXIV 0.9320 0.9173 0.9173 0.9613 0.9029 0.6957
XXV 0.7599 0.7599 0.7599 0.8817 0.9199 0.8840
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There is an interesting connection between the BORT-ansatz and Pauling bond
orders. It can be shown that if all Kekulé structures are of the same parity, the BORT-
ansatz bond orders reduce to the Pauling bond orders, provided in the derivation of the
BORT-ansatz bond orders one neglects nonorthogonality of Kekulé structures and if,
in addition, in the derivation of relevant matrix elements one retains only the leading
term. Hence, in the case of BHs which possess Kekulé structures which are all of
the same parity, the Pauling bond orders can be considered to be a first approximation
to the more accurate BORT-ansatz bond orders. Although, as shown above, in this
case the Pauling bond orders are generally less accurate than the BORT-ansatz bond
orders, they are still quite successful. However, in the case of alternant hydrocarbons
which besides positive also contain negative Kekulé structures, the analogous first
approximation of the BORT-ansatz bond orders is not identical to Pauling’s method.
For such systems, the Pauling bond orders correlate very poorly with the PPP bond
orders, while the correlation of the BORT-ansatz bond orders with the PPP bond orders
is still very successful [8].

3. Conclusions

Taking the PPP method as a reference approach, the calculation of energies and
bond orders of π-electron ground states of BHs show that the BORT ansatz (model
(IV)) provides a good method for describing these π-electron systems. Compared
with the Hückel MO method, model (IV), in which full computation can be easily
performed by hand, provides not only better semiquantitative predictions but also the
simple pictorial representation of the ground state wave functions in the sense of an
organic chemist.

The BORT models (I)–(III), which include more refined basis sets of RRSs in
conjuncture with the simple Hückel Hamiltonian, also give satisfactory predictions
of benzenoid ground-state energies and bond orders. However, the predictions of all
these models are less reliable than those given by the simplest model (IV) based on the
ansatz wave function. The quality of prediction systematically reduces from the set of
only Kekulé RRSs over the set comprising Kekulé and mono-Claus RRSs to the set
of all Kekulé and Claus RRSs. Such a deterioration is a result of discrepancy between
refinements of the Hamiltonian and the basis set. This shows that the improvement
of the model subspace should be balanced with an equal improvement of the model
Hamiltonian. The basis set including Kekulé and (mono-)Claus RRSs permits interac-
tions between nonbonded carbons and also more expanded CI and, hence, requires an
extension beyond the tight-binding and independent-particle approximations.

Concerning the comparison of the BORT bond orders with the Pauling bond
orders, it was shown that the BORT-ansatz bond orders are much more reliable than
the Pauling bond orders. Thus, if one requires a fast and relatively simple calculation
of bond orders, one should utilise the BORT-ansatz method. This approach requires no
diagonalisation and it is not much more numerically complex than Pauling’s method.
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[11] T.P. Živković, Croat. Chem. Acta 57 (1984) 367.
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